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Abstract

Spin—orbit interactions lead to small energy gaps between the outermost p;,, and p3,, shells of
noble gas atoms. Strong-field pulses tunnel-ionize an electron out of either shell resulting in
spin—orbit-driven hole motion. These hole dynamics affect the high-harmonic generation
(HHG) yield. However, the spectral shape as well as the angular distribution of the HHG
emission is not influenced by spin—orbit coupling. We demonstrate the spin—orbit effect on
atomic krypton by solving the multi-electron Schrodinger equation with the time-dependent
configuration-interaction singles approach. We also provide pulse parameters where this effect
can be identified in experiments through an enhancement in the HHG yield as the wavelength

of the strong-field pulse increases.
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(Some figures may appear in colour only in the online journal)

1. Introduction

High-harmonic generation (HHG) has become a promising
tool to study electronic structure [1-4] and dynamics
[5-7]. Many theoretical approaches have been developed to
describe HHG ranging from multi-electron descriptions [8—10]
to single-active-electron models [11, 12] and to semiclassical
models [13, 14]. In particular the semiclassical approaches are
attractive because they provide a very clear picture and make a
clear and direct connection to measurable quantities. Here, one
main assumption is usually made: the generated ionic hole state
is confined to the outermost valence shell. In noble gas atoms,
where the outermost shell is a p shell with three degenerate
states (ignoring spin—orbit coupling), a further approximation
is made that the hole is localized in the orbital aligned with the
laser polarization direction [15-17].

This assumption holds well for light noble gas atoms
usually used for producing attosecond pulses. For heavier
atoms and molecules this simplification does not generally
hold anymore because of two reasons: first, the outermost
valence shells have very similar ionization potentials such
that the strong laser field can ionize an electron from
multiple valence shells [18-21]. Second, the electron—electron
interactions become more dominant leading to non-stationary

0953-4075/14/124026+09%$33.00

hole states which require a many-body description of the ionic
system [22-25].

Multiorbital contributions in atoms due to a complex
recombination step involving more than one electron have been
experimentally seen [26]. Even though direct contributions
from orbitals other than the outermost p shell do not exist
(in contrast to molecules), many-body interchannel coupling
can, however, access deeper shells and make them ‘indirectly’
contribute. This has been theoretically shown for the 3p and
3s channels in argon [27] and the 4d and S5p channels in
xenon [28]. In recent HHG experiments with mixed gases
[29], constructive and destructive interference of the generated
HHG light from different atomic species has been observed.
This interference is not due to multiorbital effects but due to
different intrinsic dipole phases of the atomic species.

Also a hole motion can be triggered via tunnel ionization
within the outermost p shell. In recent experiments [5, 30], the
formation of a hole wavepacket involving the spin—orbit-split
4p32 and 4p;/, orbitals in krypton was demonstrated. It is
even possible to measure the degree of coherence of the hole
wavepacket via attosecond transient absorption spectroscopy
[31]. The influence of such a spin—orbit-driven hole motion on
HHG has, however, not been studied so far. Since the HHG

© 2014 0P Publishing Ltd  Printed in the UK
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process itself is spin-insensitive, one might even think that
spin—orbit effects do not influence the HHG process.

Here, we show theoretically that spin—orbit-driven hole
motion, which is a multiorbital effect, does influence HHG.
To demonstrate this, we solve the many-body Schrodinger
equation by the time-dependent configuration-interaction
singles (CIS) approach [10, 32], which describes the entire
N-electron wavefunction and, consequently, all atomic shells
that may or may not contribute in the HHG spectrum.
Specifically, we show that the HHG yield depends on the
normalized time #,./T;,, which measures the time the electron
spends in the continuum, 7., in units of the spin—orbit period T,.
When the hole motion is purely due to the spin—orbit effect,
the angular distribution of the HHG radiation is insensitive
to the hole dynamics. Also the detailed structure of the
spectrum depends only slightly on ¢./T;, because the radial
recombination matrix elements, which is responsible for the
details of the HHG spectrum, do not change. What depends
mostly on spin—orbit effects is, however, the overall HHG
yield.

The time the electron spends in the continuum, 7, =, —1;,
is linearly dependent on the wavelength of the NIR field A. Here
t; is the time of ionization, which starts the hole motion, and
t, is the time of recombination, which stops the hole motion.
By changing the wavelength the time at which the electron
recombines and the hole state is probed can be controlled.
In general, varying the spin—orbit period Ty, is also sufficient
to achieve the same effect. Unfortunately, 7, is an intrinsic
property of the atom and experimentally only A is tunable.

The further discussion is structured as follows: in
section 2.1 basic aspects of our many-body time-dependent
configuration-interaction singles (TDCIS) approach are
explained, which we use to study the multiorbital HHG
process. In section 2.2 we discuss in more detail the spin—
orbit coupling and how it can be treated as a perturbation.
In section 2.3 the consequences of the purely spin—orbit-
driven hole motion for HHG are discussed. The numerical
results are presented in section 3 for atomic krypton. We show
the spin—orbit dependence of the HHG yield by varying T,
(see section 3.1) and A (see section 3.2). Furthermore, we
identify pulse parameters where the spin—orbit effect leads to
an increase in the HHG yield by increasing A.

Atomic units are employed throughout unless otherwise
indicated.

2. Theory

2.1. TDCIS

Our implementation of the TDCIS approach [10] and the
extension to spin—orbit interactions for the occupied orbitals
[32], which we use here [33] to solve the N-body Schrodinger
equation, has been described in previous publications. We have
already successfully applied our TDCIS approach to a wide
spectrum of processes ranging from attosecond multiorbital
phenomena [32, 34] to nonlinear x-ray ionization [35] and to
strong-field physics including non-adiabatic tunnel ionization
[36] and multiorbital HHG processes [28, 37].

The TDCIS wave function ansatz reads [10]
[W(0) = o) | Do) + Y _ o (1) |®F), ¢))

a,i

where |®) is the Hartree—Fock ground state and |®{) =
EZE,»|<I>0) are singly excited configurations with an electron
removed from the initially occupied orbital i and placed
in the initially unoccupied orbital a. Due to this ansatz
the electron can be removed from any orbital and not just
from the outermost orbital as usually done in the single-
active electron approximation [12, 38]. Furthermore, the hole
state (represented by the index i) and the excited/ionized
electron (represented by the index a) can move independently
making TDCIS an effective two-active particle theory that goes
beyond the independent particle picture [39]. The interaction
between these two effective particles due to electron—electron
interaction [28, 34] or light-matter interaction [32] leads to
many surprising phenomena.

The resulting equations of motion for the CIS coefficients
read

0 (1) = —E(t) Y (Pol2]®Y)

id, &l (1) = (DY H| DY) o (1) + Y (VF1H D)l (1)
b.j

(2a)

—E@) [ (D121Do)aro(t) + Y (D¢l (1) |, (2b)
b, j

where Hy = Zn[%’z‘ — ﬁ + Vme(F,)] — Egr includes all one-
particle operators (kinetic energy, attractive nuclear potential,
and the mean-field potential Var). The nuclear charge is
given by Z and the index n runs over all N electrons in the
system. The light-matter interaction for linearly polarized
pulses is given in the dipole approximation by —E (¢) Z with
Z = Y ,Zn where E(r) is the electric field of the pulse.
The entire energy spectrum is shifted by the Hartree—-Fock
energy Eyr such that the Hartree—Fock ground state is at zero
energy. All the electron—electron interactions that cannot be
described by the mean-field potential Var are captured by
H, = %Zn,n, ﬁ — >, Vme(E,) [40]. Since we employ
a complex absorbing potential [41] to eliminate the outgoing
electron wavepacket when it reaches the end of the numerical
grid, we have to use the symmetric inner product (-], |-) instead
of the Hermitian one (-|, |-).

2.2. Spin—orbit

As spin—orbit interaction is usually a small effect in the
outermost p-shell of noble gas atoms (see figure 1) leading
to energy gaps (up to 3.8 eV in radon [42]), the spin—orbit-
coupled orbitals are well described in terms of first-order
degenerate perturbation theory. At the end of this section,
we quantify how good this approximation is in terms of
dipole transition matrix elements. But first, we review how we
include in TDCIS spin—orbit coupling for the occupied orbitals
[43]. The spin—orbit interaction in the virtual (Rydberg +
continuum) orbitals is ignored, since it is even smaller than
for the occupied orbitals as we will see in the following.

Let us consider the non-relativistic limit of the spin—orbit
interaction [44—46]
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Figure 1. Spin—orbit coupling within the outermost 4p shell of
atomic krypton. The energy splitting is relatively small compared to
the ionization potential I,.
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to understand the rapid decrease in the importance of the
spin—orbit interaction with increasing orbital energy. Here,
1, and §, are the orbital angular momentum operator and the
spin operator of the nth electron. The potential V denotes
the mean-field potential plus the nuclear Coulomb potential.
For hydrogen, V includes only the nuclear Coulomb potential
and one finds f]so o r3 [46, 47]. Note that equation (3) is
an approximative extension (from a one-electron atom) to a
many-electron atom neglecting explicit two-body spin—orbit
terms [48, 49].

For many-electron systems, the mean-field potential V
decreases as —Z/r for small radii and as —1/r for large radii
(for occupied orbitals; for unoccupied orbitals the decrease is
exponential for large r). In both cases the radial dependence
of the spin—orbit interaction goes as r~'93,V(r) r3.
Applying this result to Rydberg and continuum states, which
are quite delocalized and on average far away from the
nucleus, we find that the strength of the spin—orbit interaction
is strongly reduced in comparison to occupied orbitals and,
therefore, can be neglected. As a result, the virtual orbitals,
la) = |ng, g, mﬁ; mf,), can be directly taken from the non-
relativistic Hartree—Fock calculations, where 7, stands for the
principal quantum number of orbital a, /, is the orbital angular
momentum, mZ is its projection on the laser polarization axis,
and m} is the spin projection. Since the spin of all electrons
is always s; = % the spin quantum number is omitted in
characterizing the orbital.

After rewriting the spin—orbit operator 2 1§=2-1-¢
in terms of the total angular momentum j, it becomes clear
that the new orbitals are eigenstates of the operators j2, 12,82,
and f, which constitute the coupled LS-basis. The new spin—
orbit-coupled orbitals i expressed in terms of the old orbitals
(without spin—orbit coupling) read

; J
)= i b o) = Y0 Gl lomn), @)
ms mL

i

where the Clebsch—Gordan coefficient is given by Cl[: "Z: by =

(i, my; b, my|l3, m3), and m], m*, and m; are the projections

Table 1. The reduced dipole moments |(4p;||7||3d;)| of the ionic
transitions 3d;' — 4p,71. The results obtained via perturbation
theory are compared with literature values [31], which have been
calculated by using relativistic DF calculations performed with
GRASP [50]. The perturbative results are calculated with equation (5)
and with the non-relativistic reduced matrix element

[(3d||7|14p)| = 0.298 obtained from the xcIp code. Values are given
in atomic units.

Transition Perturbation theory  Ref. [31]  Error
[{4p3,2llrl13ds2)|  0.326 0.345 —5%
[{4p3,2I7l13dss2)| 0.108 0.112 —3%
[{(4p1,2llrl13ds2)|  0.243 0.264 —7%

of the total angular momentum, orbital angular momentum,
and of the spin on the laser polarization axis, respectively.

Within perturbation theory the change in the angular
distribution of the new occupied orbitals can be fully explained
by angular momentum coupling of /; and s;. The radial part
of the orbital wavefunction, which depends only on n and /,
does not change. This is, however, only true in the perturbative
limit. In a truly relativistic Dirac—Fock (DF) calculation the
radial wavefunction depends also on j.

To give an estimate of how good our orbitals (obtained
from perturbation theory) are in comparison with fully
relativistic DF orbitals, we compare in table 1 reduced dipole
transition strengths between the 3d and 4p shells of krypton
(which is also the atom of interest in section 3). Note that in
CIS the transition elements between the ionic (N — 1 particle)
states i~! and j~! reduces to one-particle transition elements
(i||r]|j) due to Koopmans’ theorem [39], where i~! stands
for a configuration with one electron missing in the orbital
i with respect to the neutral Hartree—Fock ground state. As
table 1 shows, the transition strengths obtained via degenerate
perturbation theory [51]

(' 1, jrln, 4 ) = (Ul 1) (=174

SN ETEETEST P 5)

deviate less than 10% from the relativistic GRAsP calculations
[50] confirming the applicability of perturbation theory. The
expression {-} is the Wigner-6j symbol [52] and s = % is the
spin of the electron.

Finally, we only need to find the orbital energies of the
new spin—orbit-coupled orbitals. Instead of determining them
with perturbation theory, we set the orbital energies to the
experimental values. This has the advantage that we have
the exact ionization potential, which is important for accurate
tunnel ionization dynamics.

2.3. HHG

In section 2.3.1, we derive an expression for the spin—orbit
dependence of the HHG yield based on the semi-classical
three-step model [53, 54]. In section 2.3.2, we give a short
argumentation why the HHG angular distribution is not
affected by the spin—orbit coupling.



J. Phys. B: At. Mol. Opt. Phys. 47 (2014) 124026

S Pabst and R Santra

2.3.1. HHG yield. 'We will ignore interchannel effects, which
would entangle the photoelectron with the ionic state. Without
this entanglement, the overall state can be written as a product
of photoelectron and hole wavefunctions.

From a time-dependent quantum calculation with a
classical description of the laser pulse, the HHG spectrum
S(w) can be calculated via the expectation value of the dipole
acceleration [45], which can be expressed in three major ways
using the dipole operator, the momentum operator, or the
dipole acceleration operator [8]. Here, we choose the length
form involving the dipole operator:

—iwi 2
S(w) |fdte (97 O] (©6)
The dipole expectation value

(@0 =Y [af O] of 0)(@712]Df)
abi

+ > [t 0)] e (0)(@4)1212f)

aij

+ 37 (o (e (1) Dol ) + c.c.). 7
captures the continuum motion of the ionized electron from
all ionization pathways (first term in equation (7)) and the
motion of the ionic hole (second term in equation (7)). The
HHG spectrum is, however, primarily due to the third term
in equation (7), which describes the recombination of the
photoelectron with the ionic hole.

In the further discussion, we will dissect the HHG
mechanism and focus on how spin—orbit coupling affects the
last term of equation (7) and, consequently, the HHG emission.
To do so, it is convenient to use the semiclassical three-step
picture [53, 54], where step 1 is the tunnel ionization of the
electron, step 2 is the field-driven motion of the electron in
the continuum, and step 3 is the recombination of the electron
with the ion. The transition matrix elements appearing in step 3
are the same matrix elements that appear in photoionization
[55]. As we have shown in previous works [34, 56], TDCIS
is able to capture multiorbital and many-body physics in
photoionization.

Tunnel ionization affects predominantly the outermost p
orbital aligned in the direction of the linearly polarized light;
from here on referred to as npy. Note that when npy is used it
stands for the uncoupled p orbital with m’ = 0. The expression
np; stands for the spin—orbit coupled p orbital with total
angular momentum j; no statement is made here about any
angular momentum projection. The initial, ionized part of the
wavefunction at the time of tunnel ionization, #;, can be written
as a product,

(W) =Y s () @ ks (1)) (®)
mS —,—/
Z aZPoJ"f, (t) | q)zpo;mﬁ)
of an ionic part |k,s(#:)) = |Pp,ms) and a photoelectron

part |xs (1)) = 3., o, ., (t)]a). Here, |@;) = &f|®o) is an
(N — 1)-electron state characterizing the ion. Equation (8)
relies strongly on the fact that the spin—orbit splitting, AE;,

is small compared to the ionization potential I,. If the
difference in the ionization potential is large, the outermost
np3s, orbital is dominantly selected and the npo character
will reduce. In the discussion that follows we will see the
benefit of the introduced separation between photoelectron
and the ionic wavefunctions. Note that the spatial distribution
of the photoelectron wavefunction for a spin-up and spin-down
electron is the same, | K ) =| X—ms ().

Field-driven propagation affects only the photoelectron
| Xms (t;)) (action is independent of mi). Due to the spatial
separation, |x,s(f)) evolves independently of |x,,s(z)) [32]
and is identical to the non-relativistic case without spin—orbit
coupling. The hole state propagates (basically) under field-
free conditions®. Since we include spin—orbit coupling, the
hole propagation is preferably described in the coupled basis.
The overall N-electron state during step 2 can still be written
as a product of electron and hole states,

W) =D s (1)) @ lKys (1)), ©)

. o
lims (1)) = ZC{Zg;s,mﬁ &' 1= | pp =)

J
_ J,0 154 ic; (t—t,)’ oS L
- Z Cl,O;s,mj‘ Cl,m’-:s,mgfm" € NPyt 5 My m )’
Pl
J,m

(10)

where ¢; is the energy of the np; orbital with the initial
condition given in equation (8).

Recombination is again a spin-insensitive process and one
finds that the photoelectron can only recombine with the np; !
hole state (neglecting interchannel effects [27, 28]). But due
to the spin—orbit coupling during the field-driven propagation
(step 2), there is a final spin—orbit effect on the recombination
strength due to the spin—orbit-driven hole motion. Inserting
equation (9) into equation (7) and focusing only on the last
(HHG relevant) term in equation (7), we find the dipole
moment

(@) =D (DolZl xms (1) ® s (1)) + c.c.

m;

2 + e—iAEw (t—t;)

B 3

can be separated in three terms: (1) a term depending on the
spin—orbit splitting AEy, = £3/2 — £1/2, (2) a phase term due
to the ionization potential I, = —&3, of the outermost orbital,
and (3) the spin-independent recombination transition element
{(npolz| x (¢)). The last two terms (including the overall factor 2)
are identical to the expression obtained without spin—orbit
interaction (up to a slightly different /). In the last step of
equation (11) we drop the spin index of the photoelectron,
since the spatial distribution and the matrix element does not
depend on it. The entire spin—orbit dependence in the dipole

2e ) (npo 2] x (1)) + c.c. (11)

3 Tonic polarization does exist but the overall effect (compared to the spin—
orbit interaction) is small [32] and can be ignored in our current discussion.
The numerical results in section 3 account for some polarization effects (within
the one-hole configurations) but they do not matter.
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moment comes from the additional term, (2 4 e ™A (=) /3,
which reflects the spin—orbit beating of the hole during the
field-driven propagation discussed previously.

The emission of photons is due to fast temporal changes
in (z)(t) around the time of recombination, t = ¢,. The
classical trajectory associated with the maximum returning
kinetic energy generates photon energies around the cut-off
energy, Weur-off- 1he time of recombination for this trajectory
is t, = 0.67T,, where T, is the period of one cycle of the
driving IR pulse. For A = 800 nm, the period is 7, = 2.67 fs
and the time of recombination is 7, = 1.79 fs.

The spin—orbit beating happens on a much slower time
scale than the duration of the recombination event, Ty, =
271/ AEgy 3> 27 [weu-ot < 100 as, such that the ionic hole
state and, hence, the prefactor cy(f,) = (2 4+ e 2Fek)/3
can be viewed as constant during the recombination event.
Consequently, the HHG yield near the cut-off energy depends
parametrically on .. The HHG yield near the cut-off energy,
Sso (@cut-oft), 18 scaled by |cso (t.)|> with respect to the non-
spin—orbit single-channel result, Syo-so (@cyt-off)

544 cos(AEgt.)
9

Sso (@eut-off) = Sho-so (@cut-off) - (12)

In this entire discussion, we assumed that the difference in
the ionization potentials can be ignored such that a perfect npy
hole wavepacket is created at r = ;. However, even though the
difference in I, is small it will lead to a preferred ionization
out of the outermost np3,, orbital exceeding the 2:1 preference
for np3/2, which already exists due to the angular momentum
coupling (see equation (11)). The increased preference for one
of the two spin—orbit-split orbitals leads to a reduced contrast
in the spin—orbit prefactor |cq, (t.)|*. Therefore, equation (12)
presents an upper bound for the beating contrast due to spin—
orbit coupling.

The general structure of the HHG will not be affected
by the spin—orbit beating as it becomes apparent from
equation (12). The spin—orbit motion affects only the yield.
The details of the HHG spectrum originate from the
recombination elements (npo|Z|x (¢)) (see equation (11)), and
these are the same whether or not spin—orbit interactions are
present.

Furthermore, we focus here on the cut-off region of the
HHG spectrum, which in a classical picture originates only
from one specific trajectory. For other energy regions of the
HHG spectrum this is not true anymore and a unique f.
cannot be identified. This has the consequence that each part
of the HHG spectrum scales a bit differently leading to a
spectrum that is not just scaled by a common global prefactor.
By choosing the cut-off region, we avoid this additional
complication and we can assign a unique .

2.3.2. Angular HHG distribution. ~ We have seen that the
overall HHG yield depends on the spin—orbit splitting. The
question remains whether also the angular distribution depends
on spin—orbit effects. A change in the angular distribution
would be reflected in non-zero dipole moments (x)(¢) and
() (t). Without spin—orbit effects these moments are zero,
since the photoelectron and the hole have always the same

mk = m} character and only Am* = 0 transitions can occur.

a
In other words, the total N-electron state V) has always the
overall orbital angular momentum M- = Y~ mb = mb—mt =
0, since the initial HF ground state has M" = 0 and the linearly
polarized pulse cannot change M*.

With spin—orbit coupling, one finds the m* character of
the hole changes by +1 while the m: = 0 character of the
photoelectron remains untouched. Naively one would think
Amb = =41 is now possible in the recombination step and,
hence, the dipole moments (x)(¢) and (y)(#) would become
non-zero. This is, however, not true. The spin—orbit coupling
changes m’ but at the same time it also changes the spin m? of
the hole in the opposite direction such that the sum is always
the same, i.e., m! = m" + m?. Since recombination is a dipole
transition, where no spin flip can occur, the photoelectron
can only recombine with hole states that have the same

spin, m} = mS> and consequently the same orbital angular

1
momentum, mk = mk.

In terms of the overall N-electron states the argument is
similar. With spin—orbit coupling the characters M* and M are
not conserved anymore but M/ = > m’ = 0 is conserved.
Due to the Wigner—Eckart theorem [52], only dipole transitions
in the z direction can occur. Dipole transitions in x or y

directions change M’ by £1.

3. Results

In this section, we present numerical results* based on the
TDCIS approach for the spin—orbit dependence of the HHG
yield (as explained in section 2.3.1). The atom of choice is
krypton with a spin—orbit splitting of 0.67 eV between the
orbitals 4p3/, and 4p;/», and an ionization potential of the
outermost 4p3; of |e32| = 14.0 eV [42] (see figure 1). All
results presented are based on TDCIS calculations with the
xcib code [33], where only the orbitals in the 4p manifold
are active and interchannel coupling among these orbitals is
included (even though interchannel coupling is not important
in this discussion). The 4s and the 3d shells are frozen and do
not affect the presented results. Calculations including these
two shells are presented in the appendix.

The influence of the spin—orbit dynamics of the ion hole
on the HHG spectrum can be solely expressed by the quantity
t./Ty as derived in section 2. To demonstrate this effect,
either the time the electron spends in the continuum, 7., or
the spin—orbit period, T;,, may be varied. In section 3.1 we
vary Ty, = 2n/AE, by changing the spin—orbit splitting
AE,. In section 3.2 we vary ¢, by changing the wavelength
of the driving NIR pulse. This case is experimentally more
realistic but the identification of the spin—orbit effect is
more challenging because the spin—orbit-free HHG spectrum
changes also with A [57-59].

4 For the system radius if 200ay we used 1000 grid points, which are non-
uniformly distributed [10] characterized by the mapping parameter of { = 3.
The complex absorbing potential starts at 180 and has a strength of 5 x 1073.
Orbitals with an energy larger than 15 au are omitted resulting in around 350
states per angular momentum. The maximum angular momentum is 120 and
for orbital angular momenta [ > 5 the residual Coulomb between the electron
and ion is reduced to the monopole term resulting in a one-particle —1/r
potential.
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Figure 2. The HHG spectrum for spin—orbit splittings of

AE,, = 0.0 eV (solid-red), AE,, = 0.5 eV (dashed green) and

AE, = 1.3 eV (dotted blue). The highlighted area around the
cut-off energy is used to discuss the spin—orbit influence on the
HHG yield. The driving pulse has a cycle-averaged peak intensity of
8.8 x 10'* W cm~2, full-width-at-half-maximum (FWHM)-duration
(of the intensity) of 10 fs, and a wavelength of 1500 nm.

3.1. Varying spin—orbit splitting

First, we demonstrate the spin—orbit effect by keeping the
driving pulse fixed and only changing the spin—orbit splitting
AE,, = €3/, — €1,2. This can be easily done in theory, since ¢;
are input parameters. To do so, we keep the ionization potential
I, = —e&3; of the outermost valence shell fixed and only
change the ionization potential of the energetically lower-lying
4p1 /2 shell,

€12 = €372 — AESO. (13)

This has the advantage that the shape and the strength of the
HHG spectra for different AE,, are comparable with each
other, since the tunnelling rate out of 4p;3, is always the same.
A variation in €3, would strongly change the tunnel ionization
rate and the overall HHG yield, which would make it harder
to uniquely identify the influence of the spin—orbit beating of
the hole state.

In figure 2 HHG spectra® are shown for different spin—
orbit strengths but for the same driving pulse (for pulse
parameters see the figure caption). The HHG yield looks
almost unchanged for low energies. At high energies close
to the cut-off energy, one finds that monotonically changing
the spin—orbit splitting does not change the HHG yield
monotonically. For large spin—orbit splitting of AE,, = 1.3eV
(blue-dotted line) the yield is larger than for AEs, = 0.5 eV
(green-dashed line). But both HHG yields are smaller than
for the non-spin—orbit case (red-solid line). Consequently,
having spin—orbit will only lead to a reduction in the overall
yield compared to having no spin—orbit interaction (see
equation (12)). But increasing the spin—orbit interaction does
not mean a monotonic change.

To derive equation (12) we made the assumption that the
HHG emission is generated in a time interval that is short
compared to Ty,. This is, however, not true for the entire
HHG spectrum. But for specific energy regions, especially
near the cut-off, this assumption holds, because only one
electron trajectory contributes to this specific energy region.

3 Note that the HHG spectra are convolved with a 2.7 eV wide Gaussian for
a smoother appearance.

1150 nm — 1500 nm 2000 nm

abs. yield [arb.units]

norm. yield

spin-orbit splitting [eV]

Figure 3. The (a) absolute and (b) normalized HHG yield around the
HHG cut-off energy as a function of the spin—orbit splitting AE,,
for the wavelengths A = 1150, 1500 and 2000 nm. The points
represent the TDCIS results. The lines are fits to the TDCIS data
using the function defined in equation 14. The driving pulse has a
cycle-averaged peak intensity of 8.8 x 10'> W cm™2 and
FWHM-duration (of the intensity) of 10 fs. The experimentally
determined spin—orbit splitting at 0.67 eV is highlighted in both
panels.

Therefore, the HHG yields shown in the following are
integrated quantities from wcyt-off — En/2 t0 ®eyt-oft + En/2
(highlighted area in figure 2), where weu-oit = 1, + 3.17Up is
the HHG cut-off energy and E;, = 27.21 eV (E;, = 1 au) is the
Hartree energy®. Another advantage of choosing the cut-off
region is that multiple-path interference does not exist in the
cut-off region [60] .

In figure 3 the absolute (a) and the normalized (b) HHG
yields are shown for the NIR wavelengths A = 1150, 1500, and
2000 nm. The yields in figure 3(b) are normalized with respect
to the AE, = 0 eV point, which corresponds no spin—orbit
coupling.

The absolute yield decreases rapidly with the wavelength
as expected [57]. The oscillations in the yield can be seen at
all three wavelengths and are due to the spin—orbit beating.
Particularly in the normalized yield the oscillations are clearly
visible. The points in figure 3 are results from the TDCIS
calculations whereas the lines are fits to the TDCIS data using
the fitting function

fi(AEg) = a+ be 2F cos(d AEy,). (14)

This fitting function represents the ratio Sgo(w)/Sho-so (@)
according to equation (12), where an additional damping
term e ~¢“E» has been introduced to account for the reduced
tunnel ionization rate of 4p;,, due to the increased ionization
potential.

In the limit of large AE|,, the orbital 4p, is so tightly
bound that the tunnel ionization rate drops basically to zero
and, hence, it does not contribute anymore to the HHG
spectrum. As a consequence, krypton reduces effectively to

6 Also a relative energy window (e.g., from 90%E yi-off t0 110%Ecyt-off)
could have been used for the integration. The qualitative features of the curves
discussed do not change when using an energy window with a fixed relative
width instead of a fixed absolute width.
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a single-shell system with one active 4p3,, shell. This fact can
be nicely seen in figure 3 for large AE|,, where the normalized
yield drops independently of A to 0.49 £ 0.02 (extracted from
the fitting parameters a and b). From equation (12), which is
based on a simple model, one would expect for large AE;, the
ratio 5/9 = 0.55, which is very close to the extracted value
0.49. The discrepancy between these two values is probably
due to the model assumption that only the m* = 0 part of the
coupled orbitals contributes to tunnel ionization, and not the
= =+1 parts.

The frequency of the oscillations in figure 3 is according
to equation (12) z.—the time the electron spends in the
continuum. From the fitting procedure, we obtain z, = 0.64 T,
for all three wavelengths, where 7} is the corresponding cycle
period. This time agrees with classical calculations predicting
atrajectory time of 0.65 T}, for the trajectory with the maximum
returning kinetic energy which is associated with generating
the cut-off energy—the energy region we consider here.

Furthermore, the results from figure 3 show that the
spin—orbit splitting should not be too large when varying the
wavelength, since the contrast in the oscillations decreases
exponentially with AE,. Too small AE, are also not good,
since they require a large wavelength range in order to cover
with 7. an entire spin—orbit period.

3.2. Varying driving wavelength

An experimentally more realistic approach is to vary the
driving wavelength A. The HHG yield changes now not
just due to the spin—orbit factor in equation (12). Varying
A also changes the cut-off energy and strongly affects the
overall yield, which scales roughly with 176 [57-59] when
keeping the pulse duration fixed with respect to the number
of optical cycles. Unfortunately, this wavelength scaling is
much more pronounced than the modulation due to spin—orbit.
However, increasing wavelength results in a monotonically
decreasing yield whereas the spin—orbit coupling (as seen in
section 3.1) can also lead to an increasing yield (for certain
pulse parameters).

Figure 4 shows the absolute HHG yields around the HHG
cut-off energy as a function of wavelength for krypton atoms
with (solid-red line) and without (dashed-blue line) spin—orbit
coupling (‘with spin—orbit coupling’ means AEy, = 0.67 eV).
Note that we keep the absolute pulse duration constant—not
the pulse duration with respect to the wavelength. Around
A ~ 1700-2400 nm we see in both scenarios, independent
of the spin—orbit coupling, a plateau in the HHG yield’. In
this region, the wavelength dependence is relatively weak
such that the spin—orbit dependence becomes very visible.
Without spin—orbit coupling the HHG yield slightly decreases
whereas with spin—orbit coupling we actually see an increase
in the yield by a factor ~1.5. A weak wavelength dependence
is advantageous for identifying spin—orbit effects which is
relatively weak compared to the general A=> to A% scaling.

7 The reason for this reduced A-dependence is the increasingly few-cycle
character of the pulse. This also means there will be a carrier-envelope phase-
dependence which is not the focus of this study where always the following
pulse form is used: cos(wt) e~/ This plateau is not expected for a multi-
cycle pulse.
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Figure 4. The absolute HHG yield around the HHG cut-off energy
as a function of the NIR wavelength with (solid-red line with
squared dots) and without (dashed-blue line with triangular dots)
spin—orbit coupling. The inset zooms into the region where the
HHG yield increases. The non-spin—orbit curve is divided by 3.37 in
the inset in order to put it on the same scale as the spin—orbit curve
for better comparison of the different trends. The pulse parameters
are the same as in figure 3.

The increase appears around this wavelength for krypton
because for A = 1600 nm and larger the time of flight 7, of
the returning electron exceeds Ze 5 and the 4pg character of the
ionic hole at recombination 1 1ncreases again. For 0 < 7, < Ti“
the 4py character first falls monotonically with f. before it
increases again. In figure 3(b) this effect is very well visible
for the different wavelengths. At A = 1500 nm the relative
HHG yield is at a minimum for the experimental spin—orbit
splitting, and at A = 2000 nm the relative yield is increasing
again. Generally, one finds for n Ty, < 7, < 2”; LT, the yield
decreases and for 2”2+ L Tio < t. < (n41) T, the yield increase
withn € N.

4. Conclusion

We have shown that spin—orbit coupling does affect the high-
harmonic generation (HHG) yield due to multiorbital tunnel
ionization of the outermost p3;» and pj,, states, which is
followed by a non-stationary hole motion. In contrast to
molecular systems with multiorbital contributions, the angular
dependence of the HHG emission is unaffected, since the total
angular momentum state of the entire system is always M’ = 0
and the electron spin does not change by dipole transitions®.
Furthermore, we showed that by changing the strength
of the spin—orbit coupling we can see clear oscillations in
the HHG yield, which agrees well with the simple picture
that the hole has initially a py character but when the
electron recombines this is only partly true leading to a
reduced recombination probability. Experimentally, the spin—
orbit motion of the hole can be seen in HHG by changing the
driving wavelength. However, macroscopic aspects like phase-
matching have to be understood, since they can lead to strong
enhancements and reduction in the HHG yield [61]. Large
spin—orbit splittings, on the one side, lead to fast oscillations

8 Dipole transitions where the spin changes can, in principle, occur but they
are strongly suppressed compared to the non-spin-changing transitions.
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spin-orbit - no spin-drbit —
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Figure A1. The absolute HHG yield around the HHG cut-off energy
as a function of wavelength with (red lines) and without (blue lines)
spin—orbit splitting. In each case only the 4p shell (dotted lines; see
figure 3) or the 3d, 4s and 4p shells (solid lines) are active.

as a function of the wavelength but also suffer in visibility due
to an exponentially decreasing strength in these oscillations.
Small spin—orbit splittings, on the other side, require a large
range of driving wavelengths to cover a full spin—orbit period
with the times the electron spends in the continuum before
recombining.

Even though it seems to be a non-trivial challenge to show
experimentally the influence of the spin—orbit effect, it does
exist and it influences how the HHG yield scales with the
wavelength.
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Appendix A. Influence of 3d and 4s orbitals

The results shown in section 3 were all calculated by
considering only the 4p shell and the spin—orbit coupling
within this shell. In figure A1 we show the influence of the
deeper lying 4s and 3d shells for the HHG yield. We see that
around A ~ 1600 nm the HHG yield starts to differ and at
A ~ 1800 nm the enhancement when including the 4s and
3d shells has grown to a factor 2.5. This enhancement is
independent of the spin—orbit consideration and exists equally
in the no-spin—orbit scenario.

Furthermore, the enhancement starts exactly at the
wavelength where the HHG cut-off energy reaches the
ionization potential of the 3d shell at 93.8 eV [62]. To be
precise, at A = 1600 nm (1800 nm) with a cycle-averaged
peak intensity of around 8.8 x 108 Wem™2 (Epax = 0.05 au),
the HHG cut-off energy is 80 eV (98 eV). However, since
the enhancement happens equally with and without spin—orbit
coupling the overall conclusions are unchanged.
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